Microneedle–Mediated Transdermal and Intradermal Drug Delivery
Samenvatting
One of the latest techniques in drug delivery, microneedles are used for administering a wide range of drug substances used to treat various medical conditions. Thorough background information is included providing a history of the field. Various methods used to produce micorneedles are described as well as a snapshot of the future directions within the industry. Written by highly qualified authors, this new text is the only title providing a comprehensive review of microneedle research in the fields of transdermal and intradermal drug delivery.
Specificaties
Inhoudsopgave
<p>About the Authors, xiii</p>
<p>1 Transdermal Drug Delivery, 1</p>
<p>1.1 Genesis of transdermal drug delivery, 1</p>
<p>1.2 Skin anatomy, 2</p>
<p>1.2.1 The epidermis, 2</p>
<p>1.2.2 The stratum corneum, 4</p>
<p>1.2.3 The dermis, 6</p>
<p>1.2.4 Skin appendages, 6</p>
<p>1.3 Routes to percutaneous drug absorption, 7</p>
<p>1.4 Facilitated transdermal drug delivery, 11</p>
<p>1.4.1 Cryopneumatic and photopneumatic technologies, 12</p>
<p>1.4.2 Sonophoresis (low–frequency ultrasound), 12</p>
<p>1.4.3 Iontophoresis, 13</p>
<p>1.4.4 Electroporation, 14</p>
<p>1.4.5 Jet injection, 14</p>
<p>1.4.6 Microneedles, 15</p>
<p>References, 15</p>
<p>2 Microneedles: Design, Microfabrication and Optimization, 20</p>
<p>2.1 Introduction, 20</p>
<p>2.2 Methods of fabricating microneedles, 21</p>
<p>2.2.1 Microfabrication of silicon microneedles, 22</p>
<p>2.2.2 Microfabrication of metal and other types of MNs, 31</p>
<p>2.2.3 Microfabrication of polymeric microneedles, 34</p>
<p>2.3 Optimization to MN design for transdermal drug delivery, 46</p>
<p>2.4 Conclusion, 49</p>
<p>References, 51</p>
<p>3 Microneedle Applicator Designs for Transdermal Drug Delivery Applications, 57</p>
<p>3.1 Introduction, 57</p>
<p>3.2 Considerations of microneedle applicators designs, 72</p>
<p>3.3 Conclusion, 76</p>
<p>References, 76</p>
<p>4 Transdermal Delivery Applications, 79</p>
<p>4.1 Introduction, 79</p>
<p>4.2 Transdermal drug delivery, 79</p>
<p>4.2.1 Partition co–efficient between 1 and 3, 80</p>
<p>4.2.2 A relatively low melting point, 80</p>
<p>4.2.3 A molecular weight less than 500 Da, 81</p>
<p>4.2.4 Unionized, 81</p>
<p>4.3 Modulation of transdermal penetration using microneedles, 82</p>
<p>4.4 Transdermal delivery using solid microneedles, 83</p>
<p>4.4.1 Transdermal delivery of low molecular weight compounds (RMM < 600 Da) in vitro using solid microneedles, 84</p>
<p>4.4.2 Transdermal delivery of low molecular weight compounds (RMM < 600 Da) in vivo using solid microneedles, 86</p>
<p>4.4.3 Transdermal delivery of high molecular weight compounds (RMM > 600 Da) in vitro using solid microneedles, 88</p>
<p>4.4.4 Transdermal delivery of high molecular weight compounds (RMM > 600 Da) in vivo using solid microneedles, 89</p>
<p>4.5 Transdermal delivery using hollow microneedles, 91</p>
<p>4.5.1 Transdermal delivery of low molecular weight compounds (RMM < 600 Da) in vitro using hollow microneedles, 91</p>
<p>4.5.2 Transdermal delivery of low molecular weight compounds (RMM < 600 Da) in vivo using hollow microneedles, 92</p>
<p>4.5.3 Transdermal delivery of high molecular weight compounds (RMM > 600 Da) in vitro using hollow microneedles, 93</p>
<p>4.5.4 Transdermal delivery of high molecular weight compounds (RMM > 600 Da) in vivo using hollow microneedles, 93</p>
<p>4.6 Transdermal delivery using biodegradable microneedles, 96</p>
<p>4.6.1 Transdermal delivery of low molecular weight compounds in vitro using biodegradable MN, 96</p>
<p>4.6.2 Transdermal delivery of low molecular weight compounds in vivo using biodegradable MN, 98</p>
<p>4.6.3 Transdermal delivery of high molecular weight</p>
<p>compounds in vitro using biodegradable MN, 98</p>
<p>4.6.4 Transdermal delivery of high molecular weight compounds in vivo using biodegradable MN, 100</p>
<p>4.7 Microneedles in combination with other enhancement strategies, 102</p>
<p>4.8 Conclusion, 105</p>
<p>References, 107</p>
<p>5 Microneedle–mediated Intradermal Delivery, 113</p>
<p>5.1 Introduction, 113</p>
<p>5.2 Vaccine delivery, 113</p>
<p>5.2.1 Vaccination, 113</p>
<p>5.3 Intradermal vaccination, 116</p>
<p>5.3.1 Skin structure, 117</p>
<p>5.3.2 Skin immune response, 117</p>
<p>5.3.3 Conventional strategies for intradermal vaccine delivery, 118</p>
<p>5.3.4 Coated microneedles, 120</p>
<p>5.3.5 Poke and Patch approaches, 129</p>
<p>5.3.6 Hollow microneedles, 131</p>
<p>5.3.7 Dissolving/biodegrading polymeric microneedles, 133</p>
<p>5.3.8 Epidermal gene delivery, 135</p>
<p>5.4 Intradermal delivery of photosensitizers for photodynamic therapy, 139</p>
<p>5.4.1 Microneedle–mediated intradermal delivery of 5–aminolevulinic acid and derivatives, 141</p>
<p>5.4.2 Microneedle–mediated intradermal delivery of preformed photosensitizers, 143</p>
<p>5.5 Intradermal delivery of nanoparticles, 144</p>
<p>5.6 Conclusion, 146</p>
<p>References, 147</p>
<p>6 Clinical Application and Safety Studies of Microneedles, 152</p>
<p>6.1 Introduction, 152</p>
<p>6.2 Clinical and safety consideration for MN application, 153</p>
<p>6.2.1 Sensation of pain, 153</p>
<p>6.2.2 Recovery of micropores and possibility of infection following microneedle application, 155</p>
<p>6.2.3 Erythema, 156</p>
<p>6.2.4 Biocompatability and biodegradation of MN material, 157</p>
<p>6.3 Conclusion, 159</p>
<p>References, 160</p>
<p>7 Microneedles: Current Status and Future Perspectives, 164</p>
<p>7.1 Introduction, 164</p>
<p>7.2 Biological fluid sampling devices, 167</p>
<p>7.3 Ocular drug delivery, 172</p>
<p>7.4 Cosmetic applications, 175</p>
<p>7.5 Industrial perspectives, 177</p>
<p>7.6 Hydrogel–forming microneedle arrays, 179</p>
<p>7.7 Moving forwards, 181</p>
<p>7.8 Conclusion, 184</p>
<p>References, 185</p>
<p>Index, 188</p>