Uniqueness Theorems for Variational Problems by the Method of Transformation Groups

Specificaties
Paperback, 158 blz. | Engels
Springer Berlin Heidelberg | 2004e druk, 2004
ISBN13: 9783540218395
Rubricering
Springer Berlin Heidelberg 2004e druk, 2004 9783540218395
Onderdeel van serie Lecture Notes in Mathematics
€ 42,94
Levertijd ongeveer 9 werkdagen
Gratis verzonden

Samenvatting

A classical problem in the calculus of variations is the investigation of critical points of functionals {\cal L} on normed spaces V. The present work addresses the question: Under what conditions on the functional {\cal L} and the underlying space V does {\cal L} have at most one critical point?

A sufficient condition for uniqueness is given: the presence of a "variational sub-symmetry", i.e., a one-parameter group G of transformations of V, which strictly reduces the values of {\cal L}. The "method of transformation groups" is applied to second-order elliptic boundary value problems on Riemannian manifolds. Further applications include problems of geometric analysis and elasticity.

Specificaties

ISBN13:9783540218395
Taal:Engels
Bindwijze:paperback
Aantal pagina's:158
Uitgever:Springer Berlin Heidelberg
Druk:2004

Inhoudsopgave

Introduction.- Uniqueness of Critical Points (I).- Uniqueness of Citical Pints (II).- Variational Problems on Riemannian Manifolds.- Scalar Problems in Euclidean Space.- Vector Problems in Euclidean Space.- Fréchet-Differentiability.- Lipschitz-Properties of ge and omegae.
€ 42,94
Levertijd ongeveer 9 werkdagen
Gratis verzonden

Rubrieken

    Personen

      Trefwoorden

        Uniqueness Theorems for Variational Problems by the Method of Transformation Groups