Session I: Foundations.- A Proof-Theoretic Approach to Hierarchical Math Library Organization.- An Exploration in the Space of Mathematical Knowledge.- Session II: Authoring.- Authoring Presentation for openmath.- Translating Mathematical Vernacular into Knowledge Repositories.- Assisted Proof Document Authoring.- Session III: Representations.- A Tough Nut for Mathematical Knowledge Management.- Textbook Proofs Meet Formal Logic – The Problem of Underspecification and Granularity.- Processing Textbook-Style Matrices.- Session IV: Proving.- A Generic Modular Data Structure for Proof Attempts Alternating on Ideas and Granularity.- Impasse-Driven Reasoning in Proof Planning.- Literate Proving: Presenting and Documenting Formal Proofs.- Session V: MKManagement Tools.- Semantic Matching for Mathematical Services.- Mathematical Knowledge Browser with Automatic Hyperlink Detection.- A Database of Glyphs for OCR of Mathematical Documents.- Session VI: Documents.- Toward an Object-Oriented Structure for Mathematical Text.- Explanation in Natural Language of ?????-Terms.- Engineering Mathematical Knowledge.- Session VII: MKM Case Studies.- Computational Origami of a Morley’s Triangle.- Designing Diagrammatic Catalogues of Types of Basic Interval Equation: A Case Study.- Gröbner Bases — Theory Refinement in the Mizar System.- Session VIII: Course Materials.- An Interactive Algebra Course with Formalised Proofs and Definitions.- Interactive Learning and Mathematical Calculus.- Session IX: Migration.- XML-izing Mizar: Making Semantic Processing and Presentation of MML Easy.- Determining Empirical Characteristics of Mathematical Expression Use.- Transformations of MML Database’s Elements.- Translating a Fragment of Weak Type Theory into Type Theory with Open Terms.