, , , e.a.

Epidemiology of Cannabis

Genotoxicity, Neurotoxicity, Epigenomics and Aging

Specificaties
Paperback, blz. | Engels
Elsevier Science | 2025
ISBN13: 9780443134920
Rubricering
Elsevier Science e druk, 2025 9780443134920
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Epidemiology of Cannabis: Genotoxicity, Neurotoxicity, Epigenomics and Aging provides a novel and comprehensive exploration of five areas that have previously been associated with cannabis use, namely mental health in adults and young adults, pediatric autism, congenital anomalies, cancers, and aging. The book also explores the possibility of how these associations might be reflected in overall disease trends at the population health level. This book surveys these five areas in detail and applies cutting-edge analytical software and geospatial space–time analytical techniques to these questions.

With all this information gathered into one book in an easily readable form, this book is a reference for clinicians, health science and allied health practitioners, public health and basic science researchers and drug and health regulators interested in these topics. It is also suitable for inclusion in course work and study preparation courses at both the undergraduate and postgraduate levels.

Specificaties

ISBN13:9780443134920
Taal:Engels
Bindwijze:Paperback

Inhoudsopgave

<p>Section A Mental illness<br>1 Close parallels between cannabis use and deteriorating US Mental Health at four levels supports and extends the epidemiological salience of demonstrated causal mental health relationships: A geospatiotemporal study<br>Introduction<br>Methods</p>- Analysis plan<br>- Statistical considerations<br>- Data availability<br>- Assessing causality<p>Results</p>- National level<br>- Regional level<br>- State level<br>- Substate level<br>- Considerations of causality<br>- Koch&rsquo;s postulates<br>- Hills&rsquo; causal algorithm<br>- Brain disease pathways and mechanisms<br>- Cannabis and mass violence<p>Brain</p>- Endocannabinoid system in the brain<br>- Dopamine<br>- Other<br>- Mitochondriology<br>- Immunome<br>- Genomic studies<br>- Cannabinoid-opioid interactions<p>Conclusion<br><br><br>Section B Autistic spectrum disorder<br>2 Linked rise of cannabis use and autism incidence demonstrated by close three-level geospatiotemporal relationships, USA, 1990–2011<br>Introduction<br>Methodological comment</p>- Assessing causality<br>- Data availability<p>Results</p>- National level data<br>- Regional level<br>- State level data<br>- Impact of cannabis legal status on autism rates<br>- Causal inference<p>Discussion</p>- Mechanistic considerations<br>- European neuroteratology studies<br>- Morphogen gradients guide brain development<br>- Retinoic acid<br>- Slit-Robo<br>- Neurexin-neuroligin<br>- DSCAM and DLGAP2<br>- Oligodendrocytes and myelination<br>- Genomic studies<br>- Epigenomic studies<br>- Pediatric poisonings<p>Conclusion<br>General questions<br>Case studies</p>- Case 1<br>- Case 2<br>- Case 3<p><br>Section C Congenital anomalies<br>3 Geospatiotemporal and causal inferential analysis of United States congenital anomalies as a function of multiple cannabinoidand substance-exposures: Phenocopying thalidomide and hundred megabase-scale genotoxicity<br>Executive summary</p>- Introduction<br>- Methods<br>- Ethics<br>- Results<br>- Cannabis-related defects<br>- Upper quintile threshold discontinuity<p>Conclusion<br>Cannabis-related congenital anomalies</p>- Cannabis-related anomalies by geotemporospatial criteria, N=38<br>- Cannabis-related anomalies by prevalence ratio criteria, N=44<br>- Cannabis-related anomalies by prevalence ratio criteria, N=42<p>Introduction</p>- Methodology<br>- Data sources<br>- Cannabis consumption quintiles<br>- Data analysis<br>- Statistics<br>- Broom-Purrr multimodel assessments<br>- Matrix multiplication<br>- Geospatial modeling<br>- Two phases of data analysis<br>- Spatial error structures<br>- Spatial model specification<br>- Corrections for multiple testing<br>- Assessing causality<br>- Data availability<br>- Ethics<p>Results</p>- Section one: Drug use by ethnicity and age<br>- Section two: Drugs and congenital anomalies overview<br>- Section three: Chromosomal defects<br>- Section four: Gastroschisis and body wall<br>- Section five: Atrial septal defect (secundum type)<br>- Section six: Cardiovascular defects of interest<br>- Section seven: Hawaiian—American review<p>Discussion</p>- General considerations<br>- Bivariate analysis<p>Summary observations</p>- Data summary<br>- Forest plot<br>- Canada<br>- Australia<br>- Mechanistic summary<br>- Multivariable analysis<br>- Multivariable causal analysis<br>- Multivariable causal analysis<br>- Effect of cannabis legalization<br>- Considerations of causality<br>- Geotemporal trimodality<br>- Causality and the hill criteria<br>- Causal inference<br>- Causal assignment<br>- Commonality<p>Pathways and mechanisms</p>- Genotoxic mechanisms<br>- Morphogen gradients control body formation and patterning<br>- Cannabinoid modulation of other morphogenetic pathways<p>Specific organ systems</p>- Heart<br>- Respiratory defects<br>- Face<br>- Gastrointestinal tract<br>- Urinary tract<br>- Body wall anomalies<br>- Limbs<br>- Chromosomal defects<p>Interactions of other major morphogen systems with cannabinoids</p>- Cannabinoid teratology<br>- Chromosomal mechanics and dynamics<br>- Sperm and cannabinoids<br>- Oocytes and cannabinoids<br>- Embryonic development<p>Conclusion</p>- Directions for future research<p>Congenital anomalies general questions and case studies</p>- General questions<br>- Case studies<br>-- Case 1: Jodie<br>-- Case 2: Jennifer<p><br>Section D Cancer and Heritable Cancer<br>4 Geospatiotemporal and causal inferential epidemiological survey and exploration of cannabinoidand substance-related carcinogenesis in the United States from 2003 to 2017 (Online chapter)<br><br><br>Section E Epigenetics and aging<br>5 Multivalent cannabinoid epigenotoxicities and multigenerational aging<br>Introduction<br>Definitions<br>Epigenetic layers<br>Hallmarks of aging<br>Methodology</p>- Data<br>- Computations<br>- Ethical permission<p>Results and discussion</p>- Historical studies<br>- Mitochondrial inhibition<br>- Important earlier epigenomic studies<br>- Longitudinal human sperm study<br>- Detailed analysis of longitudinal sperm study results<br>- Perturbation of fundamental epigenomic machinery<br>- Stem cell genes<br>- Age-related immunometabolic genes<br>- Chromosomes, centrosomes, and kinetochores<br>- DNA repair<br>- Epigenomics<p>Epigenomics of cannabinoid teratology</p>- Brain<br>- Cannabinoid neurotoxicity<br>- Cannabinoid epigenomic neurotoxicity<br>- Summary of cannabinoid neurotoxicity<br>- Cardiovascular system<br>- Other organs and systems<br>- Chromosomal anomalies<br>- Uronephrology<br>- Body wall<br>- Teratological summary<p>Epigenomics of cannabinoid-related cancers<br>Epigenomics of aging</p>- Overview of conceptual aging paradigm<br>- Aging is driven by a loss of epigenetic information<br>- Epigenomics<br>- Overall pattern of cannabis toxicity<br>- Hallmarks of cannabinoid accelerated aging<p>Epigenomic—genomic overlap in aging syndromes</p>- Heterochronic parabiosis<br>- Haemopoietic stem cells<br>- Heterochronic CSF circulation<br>- Movement in fibroblasts<br>- Ovarian aging<br>- Mouse aging<p>Epigenomics and pathobiology of aging</p>- Inflammation and stem cells<br>- Cardiovascular disease<br>- Hematopoietic stem cells<br>- Skeletal muscle<br>- Summary genomic-epigenomic tables<br>- Summary of cannabinoid aging acceleration<p>Overall summary of multivalent cannabinoid epigenotoxicities<br>Case studies—Epigenetics and aging</p>- Leonard - Case description<br>- Case questions<br>- Q multiple choice<p><br>6 Conclusion</p>

Rubrieken

    Personen

      Trefwoorden

        Epidemiology of Cannabis